Lecture: 3-4 The Chain Rule

When you have a function that is a composite function, like $y=\sqrt{x^{2}+1}$, the formulas we have so far do not let us find y^{\prime}. However, if you write your composite function as $f \circ g$, we have a formula for the derivative.

The Chain Rule: If f and g are differentiable and $F=f \circ g$, then F is differentiable and

$$
F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

Example 1: Write the composite function in the form $f(g(x))$ and then find y^{\prime}.
(a) $y=(1+3 x)^{9}$
(b) $y=\frac{1}{\left(x^{2}+2 x-5\right)^{9}}$

Example 2: Write the composite function in the form $f(g(x))$. Then, find y^{\prime}.
(a) $y=\cos \left(x^{3}\right)$
(b) $y=\cos ^{3}(x)$

Example 3: Find the derivative of $f(x)=\left(\frac{x+5}{2 x-1}\right)^{5}$.

Example 4: Find the derivative of $f(x)=(2 x-1)^{6}\left(x^{3}-2 x+1\right)^{3}$

Example 5: Find the derivative of the following functions.
(a) $y=e^{x \sec x}$
(b) $y=\sin (\sin (\sin x))$

Review: The Chain Rule: If f and g are differentiable and $F=f \circ g$, then F is differentiable and

$$
F^{\prime}(x)=
$$

Example 6: Let $F(x)=f(g(x))$, where $f(-2)=8, f^{\prime}(-2)=4, f^{\prime}(5)=3, g^{\prime}(5)=-2$, and $g^{\prime}(5)=6$, find $F^{\prime}(5)$.

Example 7: Find the derivatie of the following functions.
(a) $g(x)=\sqrt[5]{x^{3}-1}$
(b) $h(x)=\sin ^{5}\left(4 x^{2}\right)$

$$
\text { Formula: Derivative of } y=b^{x} \frac{d}{d x}\left(b^{x}\right)=(\ln b) b^{x}
$$

Example 8: Find the derivative of the following functions.
(a) $y=5^{x}$
(b) $f(x)=10^{\cos x}$
(c) $g(x)=e^{-2 x^{2}}$

Example 9: Find the derivative of the following functions.
(a) $f(x)=5^{3^{x^{2}}}$
(b) $y=\sin \sqrt{\cos (\cot (3 x))}$

Example 10: Find the points on the graph of the function $f(x)=2 \cos x+\cos ^{2} x$ at which the tangent is horizontal.

Example 11: Find the 100th derivative of $y=\sin (5 x)$.

Example 12: The average BAC of eight male subjects was measured after consumption of 15 mL of ethanol. The resulting data were modeled by the concentration function

$$
C(t)=0.0225 t e^{-0.0467 t}
$$

where t is measured in minutes after consumption and C is measured in $\mathrm{mg} / \mathrm{mL}$.
(a) How rapidly was BAC increasing after 10 minutes?
(b) How rapidly was BAC decreasing half an hour later?

Example 13: A model for the length of day (in hours) in Philadelphia on the t-th day of the year is

$$
L(t)=12+2.8 \sin \left[\frac{2 \pi}{365}(t-80)\right] .
$$

Use this model to compare the number of hours of daylight is increasing in Philadelphia on January 15th $(t=15)$ and March 21st $(t=80)$.

Example 14: Use the product rule and chain rule to prove the quotient rule.

Example 15: Find the derivatives of the following functions.
(a) $y=\cos ^{2}(\cot (2 x))$
(b) $y=x^{3} e^{-1 / x^{2}}$

Example 16: Find an equation of the tangent line to the curve $y=3^{\sin x}$ at the point where $x=0$.

